The Extension Structure of 2D Massive Current Algebras

نویسنده

  • J. Laartz
چکیده

The extension structure of the 2-dimensional current algebra of non-linear sigma models is analysed by introducing Kostant Sternberg (L, M) systems. It is found that the algebra obeys a two step extension by abelian ideals. The second step is a non-split extension of a representation of the quotient of the algebra by the first step of the extension. The cocycle which appears is analysed. Harvard University HUTMP–92/B323 University of Freiburg THEP 91/21 December 1991 Permanent address : Universität Freiburg, Fakultät für Physik, Hermann-Herder Strasse 3, D-7800 Freiburg i.Br. / Germany

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate $n-$ideal amenability of module extension Banach algebras

Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.

متن کامل

On (σ, τ)-module extension Banach algebras

Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We  obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Structure of Certain Banach Algebra Products

Let  and  be Banach algebras, ,  and . We define an -product on  which is a strongly splitting extension of  by . We show that these products form a large class of Banach algebras which contains all module extensions and triangular Banach algebras. Then we consider spectrum, Arens regularity, amenability and weak amenability of these products.

متن کامل

Functors Induced by Cauchy Extension of C$^ast$-algebras

In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008